Nanostructured ZnO, TiO2, and Composite ZnO/TiO2Films for Application in Dye-Sensitized Solar Cells
نویسندگان
چکیده
منابع مشابه
Nanostructured ZnO Photoelectrode Synthesis for Dye Sensitized Solar Cells
The main aims of this work were to produce and examine the characteristics of nanostructured ZnO in dye-sensitized solar cells. Parameters which are a ected by the e ciency such as precursor materials, morphology were investigated. The Raman spectroscopy was used to investigate transformation from bulk material to solution. General morphologies and detailed structural characterizations were obt...
متن کاملZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells
Layered multi-oxide concept was applied for fabrication of photoanodes for dye-sensitized solar cells based on ZnO and SnO2, capitalizing on the beneficial properties of each oxide. The effect of different combinations of ZnO@SnO2 layers was investigated, aimed at exploiting the high carrier mobility provided by the ZnO and the higher stability under UV irradiation pledged by SnO2. Bi-oxide pho...
متن کاملZnO Nanostructures for Dye-Sensitized Solar Cells
This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined wi...
متن کاملZnO nanotube based dye-sensitized solar cells.
We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Photoenergy
سال: 2013
ISSN: 1110-662X,1687-529X
DOI: 10.1155/2013/612095